PG-271

10141

IV Semester M.Sc. (CBCS) Examination, July - 2019

MATHEMATICS

M403T(B)-Y2K17 M402TB-Y2K14: Special Functions

Time: 3 Hours

Max. Marks: 70

Instructions: (1) Answer any five full questions.

(2) Each question carries equal marks.

- 1. (a) Define hypergeometric series. Derive convergence conditions for ordinary hypergeometric series.
 - (b) Derive the integral representation for ordinary hypergeometric series ${}_{2}F_{1}(a, b; c; z)$.
- 2. (a) For Re(c-a-b)>0, prove that ${}_2F_1(a,\,b;\,c;\,1)=\frac{\Gamma(c)\;\Gamma(c-a-b)}{\Gamma(c-a)\;\Gamma(c-b)}$ Hence deduce chu-Vandermonde summation formula.
 - (b) Prove that $_2F_1(a, b; c; z) = (1 z)^{c-a-b} \, _2F_1(c-a, c-b; c; z)$, by deriving pfaff-kummer transformation formula.
- 3. (a) State and prove q-binomial theorem. 7+3+4

 (b) Prove the following:
 - (i) $\frac{1}{(z;q)_{\infty}} = \sum_{n=0}^{\infty} \frac{z^n}{(q;q)_n}$

(ii)
$$(-z; q)_{\infty} = \sum_{n=0}^{\infty} \frac{q^{n(n-1)/2}}{(q; q)_n} z^n$$

- (c) Derive Heine's formula.
- 4. (a) State Jacobi-triple product identity. Hence, deduce Jacobi identity. 6+8
 - (b) For $\left|\frac{b}{a}\right| < |z| < 1$ and |q| < 1, then prove that

$$\sum_{n=-\infty}^{\infty} \frac{(a)_n}{(b)_n} z^n = \frac{(az;q)_{\infty} \left(\frac{q}{az};q\right)_{\infty} (q;q)_{\infty} \left(\frac{b}{a};q\right)_{\infty}}{(z;q)_{\infty} \left(\frac{b}{az};q\right)_{\infty} (b;q)_{\infty} \left(\frac{q}{a};q\right)_{\infty}}$$

P.T.O.

5. State and prove quintuple product identity.

6. Prove the following: 3+3+5+3

(i)
$$\log Q(q) = 2 \sum_{k=1}^{\infty} \frac{q^{2k-1}}{(2k-1)(1+q^{2k-1})}$$

- (ii) $Q(q) + Q(-q) = 2Q(q^4)$
- (iii) f(a, b) f(c, d) + f(-a, -b) f(-c, -d) = 2f(ac, bd) f(ad, bc)(iv) $f^2(a, b) + f^2(-a, -b) = 2f(a^2, b^2)Q(ab)$
- Define partition function p(n). Prove that the number of partitions of n 7+7 7. (a) with atmost m parts equals the number of partitions of n in which no parts exceeds m.
 - Prove the following: (b)

(i)
$$(1+x)(1+x^3)(1+x^5) \dots = \sum_{n=0}^{\infty} \frac{x^{n^2}}{(x^2; x^2)_n}$$

(ii)
$$(1+x^2)(1+x^4)(1+x^6) \dots = \sum_{n=0}^{\infty} \frac{x^{n^2+n}}{(x^2; x^2)_n}$$

State and prove Euler's pentagonal number theorem. 8.

mande the land sector which sections seem

8+6

Prove that $p(5m+4)\equiv 0 \pmod{5}$. (b)

-000-